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Abstract. We develop the stochastic mechanics of a Dirac particle interacting with an 
arbitrary external electromagnetic field in two-dimensional Minkowski space. Our construc- 
tion provides a consistent stochastic interpretation of solutions of the true (real time) Dirac 
equation and, in particular, gives a stochastic description of the zitterbewegung. 

1. Introduction 

Under the influence of the classical work of Nelson, stochastic mechanics has been a 
considerably active subject in recent years. In our opinion, what is at stake in this 
type of research is to establish whether any physical system which can be described 
within quantum mechanics admits a classical probabilistic description. 

Nelson considered the usual non-relativistic Schrodinger equation for spinless 
particles in an external electromagnetic field. The corresponding stochastic mechanics 
was viewed as a suitable reinterpretation of Newtonian mechanics. Within his 
framework, however, it was not immediately clear how to approach systems which do 
not have a classical analogue, e.g. a spin-; particle or those phenomena in which 
particle-like properties of radiation appear, like emission and absorption of light. 

In reference [ 11 two of the present authors formulated a rather general scheme to 
associate stochastic processes with time evolution of quantum observables. The basic 
idea of the method consists in reinterpreting the quantum mechanical continuity 
equations as forward Kolmogorov equations, admitting in this way a classical stochastic 
interpretation. 

In [ 1 J a complete discussion of the non-relativistic Pauli equation for a spin-f particle 
was successfully given. The same point of view proved to be very effective in the 
stochastic description of absorption and emission phenomena given in [2]. The above 
scheme, therefore, appears as a powerful heuristic principle which can be used to 
explore whether all aspects covered by quantum mechanics admit also a classical 
probabilistic interpretation. 

The next obvious step is the study of a relativistic wave equation. As Dirac did in 
the 1920s we discard the Klein-Gordon equation as it does not possess a positive 
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density. On the other hand the Dirac equation does have a positive probability density 
associated with a conserved current and therefore lends itself more easily to a stochastic 
interpretation. 

In this paper we construct the stochastic mechanics for a Dirac particle interacting 
with an arbitrary external electromagnetic field. To every nowhere vanishing solution 
of the Dirac equation in two spacetime dimensions we associate unambiguously a 
stochastic process with continuous trajectories but discontinuous velocity which pro- 
vides a truly stochastic interpretation of the zitterbewegung. 

The problem of a path integral description of the Dirac equation [3] has recently 
attracted considerable attention from several people [4-71; in particular, Gaveau et a1 
[6] studied, by probabilistic methods, a ‘heat’ equation formally related to the two- 
dimensional free Dirac theory. Our aim here is different as we give, in the spirit of 
Nelson’s stochastic mechanics [8, 91, a stochastic interpretation of the true Dirac 
equation in real time in two-dimensional Minkowski space. 

We construct also certain non-linear field equations whose solutions (‘drifts’) 
determine the dynamics of the stochastic processes associated with Dirac wavefunc- 
tions. 

In our construction these equations, fully equivalent to the Dirac theory, are 
relativistically covariant and contain only gauge invariant quantities like the 
electromagnetic tensor Fpy. In this connection there may be some contact with the 
work of des Cloizeaux [lo] although his equations are different from ours and are not 
immediately related to a probabilistic interpretation. 

2. The Dirac continuity equation as a Kolmogorov forward equation 

The Dirac equation in two spacetime dimensions reads 

a+ iMc2 ie 
a t  ax  h h 
*+ c a - + - p + + - ( ~ , , + ~ , a ) +  = O  

where +( t, x )  = ($1,). We use the Weyl representation where the matrices a and p are 

Of course c is the speed of light, M the mass of the particle and Ao, A ,  are the 
covariant components of the electromagnetic potential. Using the same notation as 
[ l ]  we consider the wavefunction + as a complex-valued function + ( t ,  x, U )  of the 
spacetime coordinates ( t ,  x )  and of a dichotomic variable a = * l .  In this language the 
continuity equation for the density p(  t, x,  U )  = I+( t, x, U)\’ is 

where &( t, x, U )  is the complex conjugate of +( t, x, a)  and not the spinor conjugate 

Now our scheme consists in rewriting (2) as a forward Kolmogorov equation of 
to + = (2J. 

a a 
the form 

- ~ ~ t , x , ~ ) + a C - P ( t , X , ~ ) + r ( f , X , U ) p ( t , X , a ) - r ( t , x , - U ) ~ ( t , X , - U ) = O  at  a x  (3 )  

with r( t, x,  U )  3 0. 
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The Kolmogorov equation (3) looks like a generalised version of 

where a is a positive constant. This equation is described in [6] and it is connected 
to the so-called telegrapher's equation [ l l ] .  The generalisation (3) has the same 
stochastic interpretation as it describes the random motion of a particle moving on a 
line with speed c constant in magnitude and which inverts its direction of motion 
(zitterbewegung) at random times not necessarily Poisson distributed. Of course 
r(  t,  x, *) represents the probability per unit time of inverting the motion at the spacetime 
point ( t ,  x) when the velocity is *c .  

Comparison of (2) and (3) gives an equation for the unknown functions r(  t, x, *) 
which must be solved under the constraint r (  t, x, *) 2 0. Following the same line of 
reasoning as [l], we find 

By this procedure with every nowhere vanishing? and normalised solution t,b( t ,  x, U )  

of the Dirac equation we associate a stochastic process f ~ c ,  on the line such that 

for every region B G R and at every time t, namely the process & reproduces at every 
time t the quantum joint probability for the space position and the speed of the particle. 

The stochastic process f, is given by 

where to and a. are real random variables distributed according to the density 
p ( 0 ,  x, U )  = I$(O, x, a)l* at the initial time t = 0. In the previous expression R, is a 
point process counting ( N o  = 0) the jumps of the velocity d&/dt  = crag( -1)'~ and which, 
in general (for non-constant r( t,  x, U ) ) ,  is not pure Poisson. 

Nevertheless the probability measure dP associated with & can be constructed 
quite explicitly from to, and some auxiliary independent Poisson process N, of unit 
parameter, i.e. E(dN,) = dt. Namely, if dP is the probability measure corresponding 
to the process 6, = to+ CU, (-l)Nr d.r, by using the formula for the Radon-Nikodym 
derivative of N, with respect to N,  as given by Kabanov et a1 in [ 141 (see also [ 15]), 
we obtain, for 0 s t s T: 

Formula (8) gives an explicit construction of d p  containing the jump probability 
per unit time r(  t,  x, U )  which, in turn, depends on the wavefunction (lr( t, x, a )  according 
to formula ( 5 ) .  

t This restriction, in the case of non-relativistic stochastic mechanics, has been removed by the recent work 
of Carlen, Meyer and Zheng [12, 131 (see also the work by Guerra [12a]). It would be interesting to study 
this problem for the case of the Pauli and Dirac equations. 
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3. Relativistic covariance and field equations 

In the following we slightly change the notation. Let x = ( x o ,  x ' )  = (cr, x ' )  be a point 
of two-dimensional Minkowski space. Under the Lorentz boost 

cosh 0 sinh 8 xo (:I) * (sinh 8 cosh B ) (  x ' )  = '( 
the Dirac spinor 4 = ($,) undergoes the transformation 

+ ( x ,  a)*(exp $ e a ) + ( A - ' x ,  a) .  (9) 

R ( x ,  ~ ) = ~ [ R ~ ( x ) - u z ( x ) ]  S ( x ,  a)  = 4 [ S o ( x ) - a w ( x ) ] .  (10) 

As usual we write $ ( x ,  a)  = exp[ R ( x ,  a) + iS(x, a ) ]  with 

Under the Lorentz transformation A we obtain, from (9) and (10) 

R , ( x )  + R 0 ( A - ' x )  

w ( x )  + w ( A - ' x )  

S o ( x )  + S o ( A - ' x )  

z ( x )  * z ( A - ' x )  - 8 

namely R,, So and w transform as scalar fields while a,z behaves like a covariant 
vector field. 

Now we introduce the covariant vector fields (gPv = (A -:)) 

u , ( x )  = - ( h / 2 M P , R o ( x )  = - ( h / 2 M ) a , s , ( x ) + ( e / M c ) A , ( x )  (12) 

which are gauge invariant and have the dimension of a velocity. From the definition 
it follows that a p ,  - a,u, = 0 and a,v, - a,v, = ( e /  Mc)F,, where F,, = a,A, -&A, is 
the electromagnetic tensor. 

The knowledge of U,, and U, is not sufficient to reconstruct the spinor $J so we 
consider also the additional fields z ( x )  and w ( x )  expressed by 

z ( x )  = c + [ R ( x ,  -a)  - R ( x ,  o ) ]  = -a,R 
(13) 

where ad= a[f(a) - f ( -a ) ] .  
The full reconstruction, up to a phase factor and a normalisation constant, of the 

Dirac wavefunction 4 ( x ,  a )  is accomplished, in some chosen gauge A,, by the formula 

W ( X )  = o [ S ( X ,  - U )  - S ( X ,  a ) ]  = -a,S 

+ ( x ,  a)  = e i a G  exp - {f[ J;u,dx'+i J ~ ( v , - f . , ) d x ~ ] + ~ ( z ( x ) + i w ( x )  )I 
(14) 

where K is a normalisation constant and j: U ,  dx, extends to an arbitrary oriented 
path in Minkowski space having 0 and x as end points. 

Now the original Dirac theory is fully equivalent to the following set of non-linear 
field equations 

a,u, - a,u, = o 
a,v,-a.u, = (e /Mc)F, , ,  

a o ~ * d , ~ * ( 2 M / h ) u o + ( 2 M / h ) u I  = -(2Mc/h)(sin w )  exp*z 

d 0 ~ * a , w * ( 2 M / h ) ~ , + ( 2 M / h ) ~ ,  = *(2Mc/h)(cos w )  exp*z 

(15) 

which are gauge invariant and covariant under Lorentz transformations as exp * z 
transforms like ( a , * a , ) z ( . )  and ( a , * a , ) W (  - ) .  
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We can now forget the Dirac equation and assume the set (15) as the starting point 
of our theory. With every reasonable solution of the field equations (15) we associate 
a stochastic process $, on the line whose density p(x, *) and transition probability per 
unit time r(x, *) are given by 

p(x, *) = K exp - (71; U, dx,*z(x) 
(16) 

r (x ,*)=(Mc2/h)( l+sin w(x)) exp*z(x) 

where the constant K is fixed by requiring that 1 = 5, [ p ( x ,  +) + p(x, -)] dx'. 

the Kolmogorov forward equation: 
From the definitions (16) and the field equations (15) it follows that p(x, *) obeys 

dop(x, U) *d,p(x, a )  - c-'r(x, -a)p(x, -u) - c-'r(x, a)p(x, a) = 0 (17) 

(18) 

whose relativistic invariance is assured by the transformations 

p (x, a) -+ eUep (A-lx, a) r(x, U) -+ e-"er(A-lx, a) 

under the boost 

> *  

cosh 6 sinh 6 
sinh 6 cosh 6 

A = (  

As a final remark we observe that, in a box of length L, normalised plane waves 
of positive (U') and negative (U-) frequency are given by 

exp( -ip,x") 

where 

p,p* = m2 = (Mc/ h)' and Po> Mc/h>O. 

For such waves we get, in the positive frequency case: 

U, = o  U, = ( h / W P ,  

w = O(mod 27r) 

while, for negative frequency, we obtain 

U, = o  U, = -(h/M)p, 

w = 7r(mod 27r). 

This result conveys some feeling about the interpretation of the fields U,, U,, z and 
w, namely that one can interpret U, and u, as osmotic and current velocity in the 
Minkowski space while w looks like an angle which changes by 7r when there is a 
jump from positive frequencies to negative ones. 
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This can be seen as follows in the general case (for superposition of plane waves): 
the transformation $(x, a) + a $ ( x ,  a) converts positive frequency solutions of the Dirac 
equation into negative frequency solutions. Under this transformation 

U, + U, U, + -U, z + z  W - ) W + T  

namely w makes a jump of T. 

4. Stochastic mechanics and the ‘heat’ equation 

We end this paper by making a remark on the relation between the stochastic mechanics 
developed here and the ‘heat’ equation considered in [6]. 

From (20), (21) and (16) it follows that the transition probability per unit time 
r( t, x, a), and so the stochastic process &, is the same for corresponding plane waves 
of positive and negative frequency. This means that, for stationary states, the stochastic 
process 6, does not depend on the sign of the energy. 

In particular, for a particle at rest for which p ,  = ( M c / h ,  0), we have: 

r( t, x, a)  = Mc2/ h (23) 

and the corresponding time homogeneous Markov process 6, is given by 

where N, is a Poisson process with parameter a = Mc2/ h. 

associated with the ‘heat’ equation: 
This process is exactly the same as considered by Gaveau er a1 [6] where it was 

(25) 
a u (  r, x, a )  - au(t  x, a )  MC’ 

- - - - - [ ~ ( t , x , u ) - u ( t , x ,  - U ) ] .  
at ax h 

The previous equation is obtained from the free Dirac theory by making the position 
U( t, x, a) = (exp i(Mc’/h)t)$( t, x, a) followed by the formal analytic continuation 

t + -it, c+ ic  (26) 
and it can be solved by the probabilistic formula 

where E( a )  is the expectation with respect to the Poisson process N ,  and uo(x, *) the 
initial datum for (25). 

In this manner one can see that the ‘ground-state’ process (24) solves the imaginary 
time free Dirac equation by analogy with the case of the non-relativistic stochastic 
mechanics. 
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